Effect of ionic liquid on formation of copolyimide ultrafiltration membranes with improved rejection of La3+

  • Baker, R. W. Membrane Technology and Applications. 3rd edn. ISBN 9780470743720. (Wiley, 2012).

  • Wang, L. K., Chen, J. P., Hung, Y.-T., Shammas, N. K. Membrane and Desalination Technologies. ISBN 978-1-58829-940-6. (Humana Press, 2011).

  • Mahmoudi, E. et al. Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep. 9, 1216. (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Penkova, A. V., Dmitrenko, M. E., Ermakov, S. S., Toikka, A. M. & Roizard, D. Novel green PVA-fullerenol mixed matrix supported membranes for separating water-THF mixtures by pervaporation. Environ. Sci. Pollut. Res. 25, 20354–20362. (2018).

    CAS 
    Article 

    Google Scholar 

  • Atlaskin, A. A. et al. Comprehensive experimental study of membrane cascades type of “continuous membrane column” for gases high-purification. J. Membr. Sci. 572, 92–101. (2019).

    CAS 
    Article 

    Google Scholar 

  • Koyuncu, I., Sengur, R., Turken, T., Guclu, S., & Pasaoglu, M.E. Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. in Advances in Membrane Technologies for Water Treatment (eds. Basile, A., Cassano, A., Rastogi, N. K.). 83–128. (Elsevier, 2015).

  • Van der Bruggen, B. Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis in Fundamental Modelling of Membrane Systems, Membrane and Process Performance (ed. Luis, P.). 25–70. (Elsevier, 2018).

  • Al Aani, S., Mustafa, T. N. & Hilal, N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. J. Water Process Eng. 35, 101241. (2020).

    Article 

    Google Scholar 

  • Polotskaya, G. A., Goikhman, M. Y., Podeshvo, I. V., Polotsky, A. E. & Cherkasov, A. N. Polybenzoxazinoneimides and their prepolymers as promising membrane materials. Desalination 200, 46–48 (2006).

    CAS 
    Article 

    Google Scholar 

  • Ulbricht, M. Advanced functional polymer membranes. Polymer 47, 2217–2262. (2006).

    CAS 
    Article 

    Google Scholar 

  • Siagian, U. W. R. et al. High-performance ultrafiltration membrane: Recent progress and its application for wastewater treatment. Curr. Pollut. Rep. 7, 448–462. (2021).

    CAS 
    Article 

    Google Scholar 

  • Polotskaya, G. A., Meleshko, T. K., Gofman, I. V., Polotsky, A. E. & Cherkasov, A. N. Polyimide ultrafiltration membranes with high thermal stability and chemical durability. Sep. Sci. Technol. 44, 3814–3831. (2009).

    CAS 
    Article 

    Google Scholar 

  • Ohya, H., Kudryavtsev, V. V., & Semenova, S. I. Polyimide Membranes. Vol. 314. (Gordon & Breach Publishers, 1996).

  • Liu, R., Qiao, X. & Chung, T.-S. The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol. Chem. Eng. Sci. 60, 6674–6686. (2005).

    CAS 
    Article 

    Google Scholar 

  • Yang, C. et al. Preparation and characterization of acid and solvent resistant polyimide ultrafiltration membrane. Appl. Surf. Sci. 483, 278–284. (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pulyalina, AYu., Polotskaya, G. A. & Toikka, A. M. Membrane materials based on polyheteroarylenes and their application for pervaporation. Russ. Chem. Rev. 85(1), 81–98 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Volgin, I. V. et al. Transport properties of thermoplastic R-BAPB polyimide: Molecular dynamics simulations and experiment. Polymers 11, 1775. (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Pulyalina, A. et al. Preparation and characterization of methanol selective membranes based on polyheteroarylene–Cu(I) complexes for purification of methyl tertiary butyl ether. Polym. Int. 66(12), 1873–1882. (2017).

    CAS 
    Article 

    Google Scholar 

  • Pulyalina, A. et al. Sorption and transport of aqueous isopropanol solutions in polyimide-poly(aniline-co-anthranilic acid) composites. Russ. J. Appl. Chem. 84(5), 840–846. (2011).

    CAS 
    Article 

    Google Scholar 

  • Pulyalina, A. et al. Novel approach to determination of sorption in pervaporation process: A case study of isopropanol dehydration by polyamidoimide urea membranes. Sci. Rep. 7, 8415. (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Helali, N., Shamaei, L., Rastgar, M. & Sadrzadeh, M. Development of layer-by-layer assembled polyamide-imide membranes for oil sands produced water treatment. Sci. Rep. 11, 8098. (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Polotskaya, G. et al. Asymmetric membranes based on copolyheteroarylenes with imide, biquinoline, and oxazinone units: Formation and characterization. Polymers 11(10), 1542. (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Volgin, I. V. Transport properties of thermoplastic R-BAPB polyimide: Molecular dynamics simulations and experiment. Polymers 11(11), 1775. (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • White, L. S. Transport properties of a polyimide solvent resistant nanofiltration membrane. J. Membr. Sci. 205, 191–202 (2005).

    Article 

    Google Scholar 

  • Barsema, J. N., Kapantaidakis, G. C., van der Vegt, N. F. A., Koops, G. H. & Wessling, M. Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. J. Membr. Sci. 216, 195–205. (2003).

    CAS 
    Article 

    Google Scholar 

  • Pulyalina, A., Polotskaya, G., Rostovtseva, V., Pientka, Z. & Toikka, A. Improved hydrogen separation using hybrid membrane composed of nanodiamonds and P84 copolyimide. Polymers 10, 828. (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Qiao, X. & Chung, T.-S. Fundamental characteristics of sorption, swelling, and permeation of P84 co-polyimide membranes for pervaporation dehydration of alcohols. Ind. Eng. Chem. Res. 44, 8938–8943. (2005).

    CAS 
    Article 

    Google Scholar 

  • Mangindaan, D. W., Shi, G. M. & Chung, T.-S. Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking. J. Membr. Sci. 458, 76–85 (2014).

    CAS 
    Article 

    Google Scholar 

  • Hua, D., Ong, Y. K., Wang, Y., Yang, T. & Chung, T.-S. ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. J. Membr. Sci. 453, 155–167. (2014).

    CAS 
    Article 

    Google Scholar 

  • Pulyalina, AYu., Putintseva, M. N., Polotskaya, G. A., Rostovtseva, V. A. & Toikka, A. M. Pervaporation purification of oxygenate from an ethyl tert-butyl ether/ethanol azeotropic mixture. Membr. Membr. Technol. 1(2), 99–106. (2019).

    CAS 
    Article 

    Google Scholar 

  • Ren, J. & Li, Z. Development of asymmetric BTDA-TDI/MDI (P84) copolyimide flat sheet and hollow fiber membranes for ultrafiltration: Morphology transition and membrane performance. Desalination 285, 336–344. (2012).

    CAS 
    Article 

    Google Scholar 

  • Ren, J., Li, Z., Wong, F.-S. & Li, D. Development of asymmetric BTDA-TDI/MDI (P84) co-polyimide hollow fiber membranes for ultrafiltration: The influence of shear rate and approaching ratio on membrane morphology and performance. J. Membr. Sci. 248, 177–188. (2005).

    CAS 
    Article 

    Google Scholar 

  • Yusoff, I. I. et al. Durable pressure filtration membranes based on polyaniline-polyimide P84 blends. Polym. Eng. Sci. 5(S1), E82–E92 (2019).

    Article 

    Google Scholar 

  • Grosso, V. et al. Polymeric and mixed matrix polyimide membranes. Sep. Purif. Technol. 132, 684–696 (2014).

    CAS 
    Article 

    Google Scholar 

  • Renner, R. Ionic liquids: An industrial cleanup solution. Environ. Sci. Technol. 35, 410a–413a (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wanga, H. H. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J. Membr. Sci. 574, 44–54 (2019).

    Article 

    Google Scholar 

  • Lessan, F. & Foudazi, R. Effect of [EMIM][BF4] ionic liquid on the properties of ultrafiltration membranes. Polymer 210, 122977 (2020).

    CAS 
    Article 

    Google Scholar 

  • Xing, D. Y., Peng, N. & Chung, T.-S. Formation of cellulose acetate membranes via phase inversion using ionic liquid, [BMIM]SCN, as the solvent. Ind. Eng. Chem. Res. 49, 8761–8769 (2010).

    CAS 
    Article 

    Google Scholar 

  • Durmaz, E. N. & Çulfaz-Emecen, P. Z. Cellulose-based membranes via phase inversion using [EMIM]OAc-DMSO mixtures as solvent. Chem. Eng. Sci. 178, 93–103 (2018).

    CAS 
    Article 

    Google Scholar 

  • Grekov, K. B. Electronic Waste and Safety Problems (in Rus.). ISBN 9785891601796. (SUT, 2018).

  • Svittsov, A. A. & Abylgaziev, TZh. Micellarly enhanced (reagent) ultrafiltration. Russ. Chem. Rev. 60(11), 1280–1283 (1991).

    ADS 
    Article 

    Google Scholar 

  • Petrov, S. & Stoichev, P. A. Reagent ultrafiltration purification of water contaminated with reactive dyes. Filtr. Sep. (2002).

    Article 

    Google Scholar 

  • Leonard, M. A. & West, T. S. Chelating reactions of 1,2-dihydroxyanthraquinon-3-ylmethyl-amine-NN-diacetic acid with metal cations in aqueous media. J. Chem. Soc. 866, 4477–4486. (1960).

    Article 

    Google Scholar 

  • Marczenko, Z., & Balcerzak, M. Fluorine. in Separation, Preconcentration and Spectrophotometry in Inorganic Analysis (ed. Kloczko, E.). 189–197. (Elsevier, 2000).

  • Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620. (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Frisch, M. J. et al. Gaussian 09, Revision C.01. (Gaussian, Inc., 2010).

  • Ochterski, J. W. Thermochemistry in Gaussian. (2000).

  • Cherkasov, A. N. A rapid analysis of ultrafiltration membrane structure. Sep. Sci. Tech. 40, 2775–2801. (2005).

    CAS 
    Article 

    Google Scholar 

  • Zheng, Q.-Z. The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J. Membr. Sci. 286, 7–11 (2006).

    CAS 
    Article 

    Google Scholar 

  • Barton, A. F. M. CRC Handbook of Solubility Parameter. Vol. 768. (CRC Press, 1991).

  • Tan, X. & Rodrigue, D. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vinylidene fluoride). Polymers 11, 1160 (2019).

    Article 

    Google Scholar 

  • Mulder, M. H. V. Phase Inversion Membranes. Membrane Preparation. Vol. 3331. (Academic Press, 2000).

  • Quijada-Maldonado, E. Pilot plant study on the extractive distillation of toluene–methylcyclohexane mixtures using NMP and the ionic liquid [hmim][TCB] as solvents. Sep. Purif. Technol. 166, 196–204 (2016).

    CAS 
    Article 

    Google Scholar 

  • Polotskaya, G. A. et al. Aromatic copolyamides with anthrazoline units in the backbone: Synthesis, characterization, pervaporation application. Polymers 8(10), 362. (2016).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Mao, J. X. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study. J. Mol. Struct. 1038, 12–18 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Source

    Leave a Reply

    Your email address will not be published.