Losses and lifetimes of metals in the economy

  • Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2013).

    Article 

    Google Scholar 

  • Global Resources Outlook 2019: Natural Resources for the Future We Want (UNEP, 2019).

  • Wackernagel, M. et al. The importance of resource security for poverty eradication. Nat. Sustain. (2021).

  • Ali, S. H. et al. Mineral supply for sustainable development requires resource governance. Nature 543, 367–372 (2017).

    CAS 
    Article 

    Google Scholar 

  • Schrijvers, D. et al. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 155, 104617 (2020).

    Article 

    Google Scholar 

  • Helbig, C., Schrijvers, D. & Hool, A. Selecting and prioritizing material resources by criticality assessments. One Earth 4, 339–345 (2021).

    Article 

    Google Scholar 

  • Charpentier Poncelet, A. et al. Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals. J. Ind. Ecol. (2021).

  • Moraga, G., Huysveld, S., De Meester, S. & Dewulf, J. Development of circularity indicators based on the in-use occupation of materials. J. Clean. Prod. 279, 123889 (2021).

    Article 

    Google Scholar 

  • Reuter, M. A., van Schaik, A., Gutzmer, J., Bartie, N. & Abadías-Llamas, A. Challenges of the circular economy: a material, metallurgical, and product design perspective. Annu. Rev. Mater. Res. 49, 253–274 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ciacci, L., Harper, E. M., Nassar, N. T., Reck, B. K. & Graedel, T. E. Metal dissipation and inefficient recycling intensify climate forcing. Environ. Sci. Technol. 50, 11394–11402 (2016).

    CAS 
    Article 

    Google Scholar 

  • Watari, T. et al. Global metal use targets in line with climate goals. Environ. Sci. Technol. (2020).

  • Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, e101298 (2014).

    Article 

    Google Scholar 

  • Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 16, 073005 (2021).

    CAS 
    Article 

    Google Scholar 

  • Beylot, A., Ardente, F., Sala, S. & Zampori, L. Accounting for the dissipation of abiotic resources in LCA: status, key challenges and potential way forward. Resour. Conserv. Recycl. 157, 104748 (2020).

    Article 

    Google Scholar 

  • Graedel, T. E. Material flow analysis from origin to evolution. Environ. Sci. Technol. 53, 12188–12196 (2019).

    CAS 
    Article 

    Google Scholar 

  • Chen, W. Q. & Graedel, T. E. Anthropogenic cycles of the elements: a critical review. Environ. Sci. Technol. 46, 8574–8586 (2012).

    CAS 
    Article 

    Google Scholar 

  • Nakamura, S. et al. MaTrace: tracing the fate of materials over time and across products in open-loop recycling. Environ. Sci. Technol. 48, 7207–7214 (2014).

    CAS 
    Article 

    Google Scholar 

  • Recycling Rates of Metals: A Status Report (UNEP, 2011).

  • Helbig, C., Thorenz, A. & Tuma, A. Quantitative assessment of dissipative losses of 18 metals. Resour. Conserv. Recycl. 153, 104537 (2020).

    Article 

    Google Scholar 

  • Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).

    CAS 
    Article 

    Google Scholar 

  • Mudd, G. M., Jowitt, S. M. & Werner, T. T. The world’s by-product and critical metal resources part I: uncertainties, current reporting practices, implications and grounds for optimism. Ore Geol. Rev. 86, 924–938 (2017).

    Article 

    Google Scholar 

  • Løvik, A. N., Restrepo, E. & Müller, D. B. Byproduct metal availability constrained by dynamics of carrier metal cycle: the gallium–aluminum example. Environ. Sci. Technol. 50, 8453–8461 (2016).

    Article 

    Google Scholar 

  • Study on the EU’s List of Critical Raw Materials (2020): Critical Raw Materials Factsheets (European Commission, 2020); https://doi.org/10.2873/92480

  • Global Mercury Supply, Trade and Demand (UNEP, 2017).

  • Burgess, H., Gowans, R. M., Hennessey, T. B., Lattanzi, C. R. & Puritch, E. Technical Report on the Feasibility Study for the NICO Gold–Cobalt–Bismuth–Copper Project Northwest Territories, Canada (Micon International Limited, 2014).

  • Wietlisbach, S. Latest developments and outlook for magnesium minerals and chemicals: Minerals production, market consumption drivers, new projects and forecast. In Proc. 7th June 2018 Industrial Minerals Congress, Barcelona (Fastmarkets IM, 2018); http://www.indmin.com/events/download.ashx/document/speaker/E001493/a0ID000000dIDNbMAO/Presentation

  • Report on Critical Raw Materials for the EU (European Commission, 2014).

  • Peiró, L. T., Méndez, G. V. & Ayres, R. U. Material flow analysis of scarce metals: sources, functions, end-uses and aspects for future supply. Environ. Sci. Technol. 47, 2939–2947 (2013).

    Article 

    Google Scholar 

  • Bertram, M. et al. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resour. Conserv. Recycl. 125, 48–69 (2017).

    Article 

    Google Scholar 

  • Manganese—It Turns Iron into Steel (and Does So Much More) (USGS, 2014).

  • Ciacci, L., Reck, B. K., Nassar, N. T. & Graedel, T. E. Lost by design. Environ. Sci. Technol. 49, 9443–9451 (2015).

    CAS 
    Article 

    Google Scholar 

  • Zimmermann, T. & Gößling-Reisemann, S. Critical materials and dissipative losses: a screening study. Sci. Total Environ. 461–462, 774–780 (2013).

    Article 

    Google Scholar 

  • Rasmussen, K. D., Wenzel, H., Bangs, C., Petavratzi, E. & Liu, G. Platinum demand and potential bottlenecks in the global green transition: a dynamic material flow analysis. Environ. Sci. Technol. (2019).

  • Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).

    CAS 
    Article 

    Google Scholar 

  • Meylan, G. & Reck, B. K. The anthropogenic cycle of zinc: status quo and perspectives. Resour. Conserv. Recycl. 123, 1–10 (2017).

    Article 

    Google Scholar 

  • Graedel, T. E., Reck, B. K. & Miatto, A. Alloy information helps prioritize material criticality lists. Nat. Commun. 13, 150 (2022).

    CAS 
    Article 

    Google Scholar 

  • Cullen, J. M. Circular economy: theoretical benchmark or perpetual motion machine? J. Ind. Ecol. 21, 483–486 (2017).

    Article 

    Google Scholar 

  • Assessing Global Resource Use: A Systems Approach to Resource Efficiency and Pollution Reduction (UNEP, 2017).

  • Graedel, T. E. Grand challenges in metal life cycles. Nat. Resour. Res. 27, 181–190 (2018).

    CAS 
    Article 

    Google Scholar 

  • Roadmap to a Resource Efficient Europe (European Commission, 2011).

  • Marscheider-Weidemann, F. et al. Rohstoffe für Zukunftstechnologien 2021 (German Mineral Resources Agency, 2021).

  • Study on the EU’s List of Critical Raw Materials (2020): Final Report (European Commission, 2020); https://doi.org/10.2873/11619

  • Fortier, S. M. et al. Draft Critical Mineral List—Summary of Methodology and Background Information—US Geological Survey Technical Input Document in Response to Secretarial Order No. 3359 Open-File Report 2018–1021 (USGS, 2018); https://doi.org/10.3133/ofr20181021

  • Blengini, G. A. et al. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills: State of Play on Existing Practices (Publications Office of the European Union, 2019); https://doi.org/10.2760/600775

  • Mudd, G. M. Key trends in the resource sustainability of platinum group elements. Ore Geol. Rev. 46, 106–117 (2012).

    Article 

    Google Scholar 

  • Nassar, N. T. in Element Recovery and Sustainability (ed. Hunt, A.) 185–206 (The Royal Society of Chemistry, 2013).

  • Schäfer, P. & Schmidt, M. Discrete-point analysis of the energy demand of primary versus secondary metal production. Environ. Sci. Technol. (2019).

  • Pauliuk, S., Kondo, Y., Nakamura, S. & Nakajima, K. Regional distribution and losses of end-of-life steel throughout multiple product life cycles—insights from the global multiregional MaTrace model. Resour. Conserv. Recycl. 116, 84–93 (2017).

    Article 

    Google Scholar 

  • Godoy León, M. F., Blengini, G. A. & Dewulf, J. Cobalt in end-of-life products in the EU, where does it end up? The MaTrace approach. Resour. Conserv. Recycl. 158, 104842 (2020).

    Article 

    Google Scholar 

  • Nakamura, S., Kondo, Y., Nakajima, K., Ohno, H. & Pauliuk, S. Quantifying recycling and losses of Cr and Ni in steel throughout multiple life cycles using MaTrace–alloy. Environ. Sci. Technol. 51, 9469–9476 (2017).

    CAS 
    Article 

    Google Scholar 

  • Helbig, C., Kondo, Y. & Nakamura, S. Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi. J. Ind. Ecol. (2022).

  • Lifset, R. J., Eckelman, M. J., Harper, E. M., Hausfather, Z. & Urbina, G. Metal lost and found: dissipative uses and releases of copper in the United States 1975–2000. Sci. Total Environ. 417–418, 138–147 (2012).

    Article 

    Google Scholar 

  • Dewulf, J. et al. Towards sustainable resource management: identification and quantification of human actions that compromise the accessibility of metal resources. Resour. Conserv. Recycl. 167, 105403 (2021).

    Article 

    Google Scholar 

  • Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).

    CAS 
    Article 

    Google Scholar 

  • Du, X. & Graedel, T. E. Uncovering the global life cycles of the rare earth elements. Sci. Rep. 1, 145 (2011).

    Article 

    Google Scholar 

  • Haarman, A. The Anthropogenic Antimony Cycle: Dynamic Analysis of Global Flows and Stocks of Antimony and Associated Environmental Impacts (Delft University of Technology and Leiden University, 2015).

  • Flow Studies for Recycling Metal Commodities in the United States (USGS, 2004).

  • Le titane (Ti) – éléments de criticité (BRGM, 2017).

  • Mineral Commodity Summaries 2020 (USGS, 2020).

  • Gold Supply and Demand Statistics (World Gold Council, 2021); https://www.gold.org/goldhub/data/gold-supply-and-demand-statistics

  • Annual Report 2019 (SQM, 2019).

  • PGM Market Report: May 2020 (Johnson Matthey, 2020).

  • Nuss, P., Harper, E. M., Nassar, N. T., Reck, B. K. & Graedel, T. E. Criticality of iron and its principal alloying elements. Environ. Sci. Technol. 48, 4171–4177 (2014).

    CAS 
    Article 

    Google Scholar 

  • Weidema, B. P. & Wesnæs, M. S. Data quality management for life cycle inventories—an example of using data quality indicators. J. Clean. Prod. 4, 167–174 (1996).

    Article 

    Google Scholar 

  • Graedel, T. E. et al. Methodology of metal criticality determination. Environ. Sci. Technol. 46, 1063–1070 (2012).

    CAS 
    Article 

    Google Scholar 

  • Reichl, C. & Schatz, M. World Mining Data 2021 (Federal Ministry of Agriculture, Regions and Tourism, 2021).

  • Pauliuk, S. & Heeren, N. ODYM—an open software framework for studying dynamic material systems: principles, implementation, and data structures. J. Ind. Ecol. (2019).

  • Helbig, C. & Charpentier Poncelet, A. ODYM–MaTrace–dissipation. OSF Registries (2022).

  • Source

    Leave a Reply

    Your email address will not be published. Required fields are marked *